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Abstract
Monte Carlo simulation in the grand canonical ensemble, the histogram reweighting technique
and finite size scaling are used to study the phase behaviour of dimers in three-dimensional
systems. A single molecule is composed of two segments A and B , and the bond between them
cannot be broken. The phase diagrams have been estimated for a set of model systems.
Different structures formed by heteronuclear dimers have been found. The results show a great
variety of vapour–liquid coexistence behaviour depending on the strength of the interactions
between segments.

1. Introduction

One of the most interesting problems in the theory of fluids
is their phase behaviour. In particular, phase transitions
in single-component fluids have been a subject of abiding
interest to theorists for many years. In the simplest model of
fluids a molecule is treated as a point source of a spherically
symmetrical intermolecular potential. Such a molecule has
only translational degrees of freedom. The molecules do not
exhibit any anisotropic features such as magnetic moment or
electric charge. The isotropic intermolecular interactions can
be separated into a repulsive part and an attractive part. The
range and strength of these interactions significantly affect
phase transitions in the systems [1–4]. Much more complex
phase behaviour was found for fluids in which a particle carries
an internal degree of freedom, as for instance a magnetic
moment, a spin or a dipolar moment. In this case fluids
exhibit additional phase transitions associated with internal
degree of freedom, e.g. a transition between ferromagnetic and
paramagnetic fluids [5] or a transition between isotropic and
ferroelectric fluids [6]. Studies have considered various lattice-
based [7, 8] as well as continuum fluid models [9–13].

Various methods of statistical mechanics have been used
to deal with such models. Mean-field analysis and density
functional theory have been applied to describe a dipolar
fluid [5, 9] and a Heisenberg spin fluid [6, 12, 13]. Computer
simulations have been performed for a two-dimensional spin

fluid [14], a three-dimensional Heisenberg fluid [11, 15], a spin
1/2 quantum fluid [16] and a van der Waals–Potts fluid [10].
The phase diagrams obtained for these models showed unusual
richness of phases stemming from competition between
different forces. For some single-component fluids with
internal degrees of freedom the topology of phase diagrams
is analogous to that observed in apparently distinct systems,
such as binary liquid mixtures [17] or ionic fluids [18, 19].
This observation is at first sight surprising, but can be easily
explained because one can consider these systems as fluids
consisting of molecules having two-state internal degrees of
freedom. In the case of a binary mixture the particle species
can be interpreted as a kind of ‘pseudospin’ variable [17].

Another group of fluid models explicitly involve the
architecture of molecules and mimic their shape and chemical
composition. A molecule can be modelled as a complex
structure built of the same or different units (segments) linked
together. Such a model is often used to describe normal and
branched polymeric chains. The energy of interaction between
two molecules is the sum of segment–segment interactions. In
other words, the potential acting between a pair of chains is a
multicentre one. The simplest molecule of this sort is a dimer.
In this paper we deal with the phase behaviour of a special class
of dimers.

For many years systems involving dimers have been
studied in the framework of both lattice and off-lattice
models [20–38]. In lattice-based theories multisite occupancy
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models are implemented and each unit of the molecule
occupies different lattice sites. In theoretical studies the key
problem is to estimate a number of possible configurations for
the system. This task is much more difficult than for the single-
site problem because there is no statistical equivalence between
molecules and vacancies. If a given lattice site is occupied by
a dimer segment then at least one of nearest-neighbour sites
is also occupied. To date much effort has been devoted to
estimating the number of configurations. The exact solution
of this problem is known only for homogeneous dimers in
the two-dimensional system at full surface coverage [22–24].
Other studies have been devoted to homogeneous dimers.
Dimers built from different segments have been less intensively
studied [32–38]. A heterogeneous dimer is a model of
diatomic molecules, e.g. CO or NO. On the other hand, a
heterogeneous dimer can mimic a molecule consisting of two
considerably different parts. One can mention here such
chemical compounds as alcohols, amines and amphiphiles.
Molecules of amphiphiles contain both hydrophilic and
hydrophobic parts. The difference in properties of both
parts is the most important reason for the self-assembly and
the existence of various phases in amphiphilic systems [39].
Adsorption of dimers has been explored using theoretical
and experimental methods [40–43]. The orientation of CO
molecules adsorbed on Mg(100) crystalline surfaces and on
alkali halides with the rocksalt structure was studied by using
spectroscopic analysis [44] and quantum calculations [43]. The
experiments showed that, depending on the conditions, dimers
can be perpendicular or parallel to the surface; moreover,
different ordered structures were found in such monolayer
films. The systems consisting of heterogeneous dimers
exhibit a great variety of phase transitions. In our previous
papers we dealt with phase behaviour of the dimers in two-
dimensional systems [32–38]. Two-dimensional systems can
mirror the properties of monolayers formed by adsorption on
flat surfaces or in very narrow pores. It is well known that
space dimensionality has an important effect on the phase
behaviour. This fact is one reason for extending our studies
to three-dimensional systems containing dimers. Moreover,
a description of interfacial systems requires knowledge of
properties of the bulk fluids. Lattice-based theories are often
used to describe molecular fluids in various systems, so it is
important to analyse possible phase transitions occurring for
such models. In this paper we explore the phase behaviour
of heteronuclear dimers in a three-dimensional lattice system
using Monte Carlo simulation methods.

The main aim of this work is to understand how the
topology of the phase diagram depends upon the relative
strength of interaction between segments.

2. The model

We consider a three-dimensional system consisting of N
heterogeneous dimers built from the segments A and B . We
introduce a lattice model with a site occupied by one segment.
A pair of occupation variables (cA, cB) characterizes each
lattice site; cx (x denotes a kind of the segment) can take the
values cxi = 1 when a site is occupied by the segment x and

cxi = 0 in other cases. Only the nearest-neighbour interactions
are taken into account. In the grand canonical ensemble the
Hamiltonian has the following form:

H = u AA

∑

〈i, j〉
cAicA j + uB B

∑

〈i, j〉
cBi cB j

+ u AB

∑

〈i, j〉
cAicB j − Nu AB − Nμ, (1)

where μ is the chemical potential of dimers and u AA, uB B

and u AB are the energies of interactions for different pairs
of segments. The summations labelled 〈i, j〉 are over all
pairs of nearest-neighbour segments (including interactions
between segments belonging to the same molecule). The
term (−Nu AB ) is a correction following from the existence of
bonds.

We introduce the spin variables in the following form:

Si =

⎧
⎪⎨

⎪⎩

1 for cAi = 1, cBi = 0

0 for cAi = 0, cBi = 0

−1 for cAi = 0, cBi = 1.

(2)

Using a simple variable transformation

cAi = Si (Si + 1)/2 cBi = Si (Si − 1)/2 (3)

one can rewrite the Hamiltonian (1) in the form of a spin-1
lattice model Hamiltonian:

H = ε
∑

〈i, j〉
S2

i S2
j + ε1

∑

〈i, j〉
Si S j

+ ε2

∑

〈i, j〉
(S2

i S j + Si S2
j )+ H

∑

j

S2
j , (4)

where the last sum is over all lattice sites, and

ε = 1
4 (u AA + uB B + 2u AB), (5)

ε1 = 1
4 (u AA + uB B − 2u AB), (6)

ε2 = 1
4 (u AA − uB B), (7)

H = 1
2 (u AB − μ). (8)

When H is replaced by H ′ = − 1
2 (μA − μB) the

Hamiltonian (4) describes an equimolar binary mixture of
monomers A and B . Depending on the relations between
energy parameters, the Hamiltonian (4) describes different
models. For symmetrical segment–segment interactions
(u AA = uB B, ε2 = 0) the Hamiltonian (4) corresponds to
the Blume–Emery–Griffiths [45] model. When, additionally,
ε = 0, the Hamiltonian is appropriate for the Blume–Capel
model [46, 47]. A two-dimensional fluid of heterogeneous
dimers with symmetrical, attractive interactions (ε2 =
0, ε, ε1 < 0) has been discussed in [32]. However, when
u AB = uB B( then ε1 = ε2) the Hamiltonian (4) can be
rewritten as

H = ε
∑

〈i, j〉
S2

i S2
j + ε1

∑

〈i, j〉
Si S j (Si + Sj + 1)+ H

∑

j

S2
j . (9)

The phase behaviour of such a class of dimers in two-
dimensional systems was studied in [33–35] and the ground
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Figure 1. Schematic representation of the sublattices used to
calculate the order parameters for the AF (a) and SAF (b) phases.

state for the Hamiltonian (4) was discussed in [35]. For ε < 0
all possible ordered states correspond to a completely covered
lattice. When ε > 0 the ordered structures can also be formed
at lower densities [30, 31]. For ε1 < 0 the mixed pairs AB are
energetically profitable and the antiferromagnetic structure of
segments (AF) is stable. The bonds are randomly distributed
over the lattice. When ε1 = 0 a completely disordered phase
is observed. However, for ε1 > 0 the contacts AA and B B are
preferred and the super-antiferromagnetic phase (SAF (4 × 1))
structure is formed. The structure consists of replicated AAB B
layers in which all bonds are parallel. One can say that there is
an ordering of segments as well as an ordering of bonds. This
structural transition is to some degree similar to demixing in a
binary mixture of monomers A and B [17]. In the considered
case, however, the segments A and B are permanently bonded
so differences in strengths of interactions between the same and
different segments can only cause change in the orientation of
molecules.

In three-dimensional systems the order parameters for
these structures can be defined as follows. In the case of the
AF structure we use the parameter

ψAF = ma − mb + mc − md − me + m f − mg + mh, (10)

where

mi = 1

L3

∑

(i∈k)

Si , (11)

and where k denotes the sublattice a, b, c, d, f, g, h defined in
figure 1(a), L is the linear size of the system. For a perfect
phase AF |ψAF| = 1. Note that the AF-phase is characterized
by an one-component order parameter.

The order parameter for the SAF (4 × 1) structure can be
expressed as

ψ2D,SAF =
√
ψ2

1,x + ψ2
2,x + ψ2

1,y + ψ2
2,y, (12)

and

ψSAF =
√
ψ2

1,x + ψ2
2,x + ψ2

1,y + ψ2
2,y + ψ2

1,z + ψ2
2,z . (13)

where
ψ1,α = ma + mb − mc − md, (14)

ψ2,α = ma − mb − mc + md, (15)

for α = x, y, z.

The sublattice a, b, c, d is defined in figure 1(b) for a
perfect SAF-phase ψSAF = 1.

To study the liquid–vapour transition we use the usual
order parameter defined as

m = ρ − 〈ρ〉, (16)

where

ρ = 1

L3
〈S2

i 〉. (17)

In general, for a system which does not exhibit the special
symmetry of the order parameter (as the magnetization in
the Ising model) the field-mixing effects should be taken
into account [48] and the order parameter is expressed as a
linear combination of the density and energy. However, many
authors have used the order parameter m to estimate the critical
parameters and obtained sufficiently accurate results [49, 50].

3. Monte Carlo simulation

All simulation techniques used in our study have been
described elsewhere [51–55], therefore we confine the
discussion of the methodology to the most important aspects.
The simulations were conducted in the grand canonical
ensemble using hyper-parallel tempering [54]. The cubic
simulation cell was used with the standard periodic boundary
conditions in all (x, y, z) directions. The linear dimension of
the system ranges between L = 12 and L = 40. The Monte
Carlo step (MCS) consisted of an attempt to insert a molecule
at a randomly chosen position with random orientation, or an
attempt to remove an existing particle. A typical equilibration
run consisted of 106 MCS (per site) and the production run
amounted to about 108 MCS. We have calculated the density,
the order parameters and the average energy (u). In our work
we use |uB B | as the unit of the energy.

Multiple-histogram reweighting was applied to analyse
the results [55, 56]. We collected the histograms of density
P(ρ) and suitable order parameters (P(ψ)) for systems of
different sizes. In finite systems close to a phase coexistence
the density distributions P(ρ) = ∫

P(ρ, u)du has two peaks.
The vapour–liquid coexistence curves have been determined
according to the equal area rule, i.e. by tuning the chemical
potential at a given temperature until the areas under two peaks
in the density distribution P(ρ) become the same [55].

The ordering in the system was detected by means of the
order parameters m, ψAF and ψSAF. These order parameters
are complemented by corresponding susceptibilities

χψ,L = 1

kT
[〈ψ2〉 − 〈|ψ|〉2] (18)

and the fourth-order cumulants [57]

Uψ,L = 1 − 〈ψ4〉
3〈ψ2〉2

. (19)

In the case of a first-order transition the maximum value
of susceptibility scales with the system size as [58–60]

χmax,L ∝ χ0 + αL D, (20)
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Figure 2. Phase diagram in the T –ρ plane for
u AA = uB B = u AB = −1 and L = 12.

where χ0 = (χ+ + χ−)/2, χ+ and χ− are the values of
the susceptibility in the two coexisting phases at the transition
point, D is the system dimensionality and α is a constant. Thus

χcorr,L ∝ αL D, (21)

where χcorr(L) = χmax(L) − χ0. The values of χ0 can be

estimated from the plot of χmax(L) versus L D , by extrapolating
the data to L = 0.

According to the finite size scaling theory the order–
disorder transition in a finite system is rounded and shifted.
For this reason the transition parameters have been determined
from the well-known scaling relationships [53]. The true
transition temperature was extracted from the plot Uψ,L versus
T (Uψ,L versus μ) obtained for various values of L, since all
the curves intersect at T (μ) giving the fixed value U ∗

ψ . The
value U∗

ψ characterizes the universality class of the transition.

4. Results and discussion

4.1. Homogeneous dimers

We begin with the presentation of the phase diagram estimated
for homogeneous dimers on a three-dimensional cubic lattice
(figure 2). The universal value of U ∗

m extracted from the
cumulant crossings point equals 0.47 (see figure 3(d)). Note
that Ferrenberg and Landau obtained the same result for a
three-dimensional simple cubic Ising model [61]. We obtained
the following critical parameters for dimers: Tc = 1.454,
μ = −3.907.

As we have already mentioned, our main goal is to
study the phase behaviour of heterogeneous dimers. The
effects of differences in the strength of interactions between
segments on phase transitions in two-dimensional monolayers
was discussed in our previous papers [32–36]. Below we

Figure 3. The changes of the fourth-order cumulants Um,L with temperature for systems characterized by uB B = u AB = −1, calculated along
the coexistence curve for different sizes of the simulation cell L (given in the figure) for various values of u AA : (a) u AA = 1, (b) u AA = 0.5,
(c) u AA = 0 and (d) u AA = −1.

4
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Figure 4. The dependences of the order parameter |ψAF,L | (a) and its fourth-cumulant (UψAF,L ) (b) on the chemical potential for
uB B = u AB = −1, u AA = 1 at T = 1.9 and different system sizes, given in the figure. Part (c) shows the changes of the order parameters
|ψAF,L | with the chemical potential for systems characterized by uB B = u AB = −1, u AA = 0 at T = 1.5, obtained for different system sizes
of the simulation cell (shown in the figure). Part (d) shows the distribution of the order parameter ψAF estimated at the maximum of
susceptibility μ = −1.83 at T = 1.5 for L = 16.

consider two classes of systems: systems with a stable AF-
phase and system for which the SAF-phase is formed.

4.2. Heterogeneous dimers with a stable AF-phase

The results obtained for uB B = u AB = −1 and u AA ∈ [−1, 1]
are shown in figures 3–7. In such systems, apart from the
case of homogeneous dimers (u AA = −1), the AF-structure is
stable. The density cumulants Um,L along the vapour–liquid
coexistence curve as functions of temperature for different
lattice sizes are plotted in figure 3. According to the finite
size scaling theory these curves should have one well-defined
intersection point. Indeed, for u AA = 1 and for u AA = −1 the
fixed points can be precisely estimated by cumulant crossings
even for relatively small systems. For strong repulsive AA-
interactions (u AA = 1) we found U∗

m ≈ 0.36. This value
seems to be close to that corresponding to the universality
class of a three-dimensional tricritical point model [62–64].
For attractive interactions (u AA = −1), however, we obtained
U∗

m = 0.47, which is characteristic of the three-dimensional
Ising model universality class [61]. Similar crossover between
the universality classes was found for heterogeneous dimers
in two-dimensional systems [35]. When the energy u AA

increases, the value of U ∗
m changes rapidly, but estimation of

the crossover point is very difficult.

For u AA close to the crossover point the cumulant crossing
method can only be used for large systems. This is illustrated
in figure 3. For u AA = 0.5 the curves obtained for L =
16, 24, 28, 40 do not intersect at one point. The intersection
point of the curves for the two large systems yields U ∗ ≈ 0.36.
However, the results obtained for u AA = 0 suggest that we are
close to the region of crossover between different universality
classes. In the latter case the intersection point for L = 28, 40
gives U∗

m < 0.30.
Figures 4(a) and (b) present the dependences of the order

parameter |ψAF| and its fourth-order cumulant (UψAF,L ) on the
chemical potential for u AA = 1 and for different system sizes.
These results were obtained at T = 1.9. This temperature
is considerably higher than the critical temperature of the
vapour–liquid transition (see figure 3; Tc = 1.567). The
changes in the order parameter are typical for second-order
phase transitions. This implies that there is a second-order
transition between a disordered fluid and an ordered fluid of
the AF-type. The same conclusion follows from figure 4(c),
where the order parameters versus the chemical potential are
plotted for u AA = 0. The existence of an ordered structure in
the system is confirmed by an analysis of the distribution of the
order parameter estimated at the susceptibility maximum (T =
1.5, μ = −1.83). The distribution presented in figure 4(d)

5
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Figure 5. The distributions of the order parameter ψAF,L for the systems characterized by uB B = u AB = −1, u AA = 1 ((a), (b)) and
uB B = u AB = −1, u AA = 0 ((c), (d)), obtained for different sizes of simulation cell for selected temperatures (shown in figures), calculated
along the coexistence curve.

possesses two symmetric maxima corresponding to the AF-
structures. This distribution can be mapped into the master
curve estimated with a high accuracy for the three-dimensional
Ising model [65].

In figure 5 the distributions of the order parameter ψAF

along the coexistence line are presented for different system
sizes. The upper panels illustrate the structure of the system
for u AA = 1 and for two thermodynamic states (μ, T ). At
temperatures below the critical point of the condensation (T =
1.55) one can see two symmetric peaks corresponding to the
ordered AF-liquid, and a middle, lower, peak corresponding
to a disordered vapour. Above the critical temperature of the
vapour–liquid transition (i.e. at T = 1.58) an ordered fluid
is still observed, but only the ordered AF-phase is stable. In
the lower panels the distributions for u AA = 0 are depicted.
At T = 1.25 the results are analogous to those obtained for
u AA = 1. However, in this case a change of the system size
can qualitatively change the distribution. At T = 1.27 for
small systems there is a maximum at ψAF = 0 (a disordered
phase), whereas for larger systems the minimum is observed.
This is consistent with analysis of figures 3(b) and (c).

Figure 6 presents the phase diagrams estimated for u AA =
1 and u AA = 0. In the case of u AA = 1 we found the λ-
line corresponding to a second-order phase transition between

a disordered and ordered AF-fluid, which meets the vapour–
liquid coexistence curve at a critical point of condensation.
Thus, the system possesses a tricritical point (marked by a
black square). For u AA = 0 we cannot judge whether the λ-line
terminates at the critical point of condensation or at a critical
end point.

We have supplemented our study with a series of
simulations for the Hamiltonian corresponding to the Blume–
Capel model (ε1 = −J = −1, H = μ). The aim of these
investigations was to estimate the universal value of U ∗

m and
the transition parameters for the tricritical point model in three
dimensions. As follows from figure 7, the estimated cumulant
is U∗

m ≈ 0.352. The critical temperature of condensation Tc =
1.393 and the critical chemical potential μc = −2.8488. The
value of U∗

m is somewhat lower than that obtained for dimers
(see figure 3). However, it is well known that an accurate
estimation of the critical parameters for systems exhibiting
tricritical point behaviour is very difficult and different values
are reported in the literature [62–64]. Note that D = 3 is
the upper critical dimension for the tricritical point model.
Bausch [66] showed that close enough to the tricritical point
fluctuation effects dominate for D < 3 but for D > 3
the mean-field behaviour of the system was observed. This
can explain numerical problems with estimation of critical
parameters.
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Figure 6. Phase diagrams in the T –ρ plane for the systems
characterized by uB B = u AB = −1, for various values of the
parameter u AA : (a) u AA = 1, (b) u AA = 0.

Figure 7. The cumulant intersection plot for the systems with
different linear dimensions L for the Hamiltonian corresponding to
Blume–Capel model.

4.3. Heterogeneous dimers with the stable SAF-phase

We turn now to the results for three-dimensional systems,
in which stable SAF structures can be formed. We
have considered attractive, symmetrical segment–segment

Figure 8. Phase diagram in the T –ρ plane for u AA = uB B = −1 and
u AB = −025 and L = 12 (a). The adsorption isotherm ρ (solid line)
and order parameter ψSAF (dotted line) plotted for u AA = uB B = −1,
and u AB = −0.25 at T = 0.825 (b).

interactions, u AA = uB B = −1 and u AB = −0.25. In this
case the phase diagram splits into two parts corresponding to
two first-order phase transitions. The first transition is the
usual gas–liquid coexistence. The other one corresponds to the
structural transition between two liquid phases—a disordered
liquid and an ordered SAF-phase. Both branches join together
in the triple point. The critical temperature of condensation
on the cubic lattice, for this category of heterogeneous dimers,
was estimated from an analysis of the density cumulants, Tc =
0.998. The transition belongs to the universality class of the
three-dimensional Ising model. When the energy of attraction
decreases (u AB ) the triple point is shifted towards the critical
point of condensation. For (u AB ≈ 0) there is only one phase
transition between a disordered gas and an ordered liquid of the
SAF type. The triple point disappears and the phase diagram is
of the ‘swan neck’ type [32].

In the diagram presented in figure 8(a) two first-order
transitions are visible: the first corresponds to vapour
condensation whereas the second is the structural transition.
In the range of temperatures [0.79, 0.84] two transitions are
observed: the vapour–disordered liquid transition and the
disordered liquid–ordered liquid transition. Below the triple

7
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Figure 9. Changes of the order parameter ψ2D,SAF with the chemical potential for systems characterized by u AA = uB B = −1, u AB = −0.35,
calculated at the temperature T = 0.515 for different sizes of simulation cell given in the figure (a). Part (b) shows the log–log plot of the
maximal susceptibility χcorr,SAF on the system size.

point (around 0.79) only one transition, between the vapour
and the ordered liquid, remains. Preliminary simulations have
been performed for systems with u AB = 0 and −0.125.
Analysis of the isotherms and histograms leads to the following
conclusions: for u AB = 0 a ‘swan neck’ type phase diagram
was found. The same class of phase diagram was observed for
two-dimensional systems [32]. In the case of u AB = −0.125
the phase diagram is similar to that presented in figure 8(a).
The triple point is located at a higher temperature, T ≈ 0.825,
and the critical points for both transitions almost coincide. The
triple point temperature decreases with the interaction energy
u AB approaching −1.

In figure 8(b) we present the density and order parameter
ψSAF isotherms. The density isotherm exhibits two jumps, the
first, larger, jump corresponds to the condensation, whereas the
other, smaller, jump is connected to the structural transition.
On the other hand, the order parameter isotherm exhibits one
sharp jump at the chemical potential of the structural transition.
Since ‘the structural jump’ on the density isotherm is small,
the coexistence envelope between two stable liquids is very
narrow. It is thus not clear whether the system really undergoes
a first-order structural transition or, perhaps, one should expect
a λ-line here. The structural transition occurs for systems with
high densities, consequently the calculations require very long
runs. The lattice is almost completely filled by dimers and any
change of the system state is difficult. A similar phase diagram
was estimated for dimers on a square lattice in two dimensions
(figure 1 in [32]). Such simulations were considerably faster.
Therefore we could consider bigger systems and achieve good
statistics.

In order to resolve the question of the order of the
structural transition in three dimensions we have performed
additional calculations in two dimensions hoping that the
conclusion will be similar. Figure 9(a) presents the
dependences ψ2D,SAF versus μ for different system sizes in
two dimensions. For large enough systems the order parameter
lines intersect. This suggests that the considered transition is
of the first-order. Additional confirmation of this conclusion
is given in figure 9(b), where we show the dependence of

the maximum susceptibility χcorr(L) on the system size. The
slope (2.04) of this straight line is characteristic of first-order
transitions (cf equation (18)).

5. Conclusions

We have used the hyper-parallel tempering Monte Carlo
method and multiple-histogram techniques to study phase
transitions of heterogeneous dimers on a three-dimensional
simple cubic lattice. This model is closely related to the
Blume–Capel model (see section 2), which is a generic
model to qualitatively describe the phase behaviour of various
systems, including binary mixtures (see section 1). The
phase diagrams have been estimated for the selected sets of
system parameters (u AA, uB B, u AB ). We have shown that the
relative strength of interactions between different segments
strongly affects the topology of the phase diagrams. We have
found that depending upon the relation between energies two
ordered structures may be formed, i.e. the AF phase and the
SAF structure. The estimated phase diagrams include many
interesting features, such as triple points, tricritical points,
critical end-points, vapour–liquid coexistence, coexistence
between a disordered and ordered liquid of the SAF type and
the λ-line corresponding to a continuous transition between the
disordered and the ordered fluid.

We have determined the fixed point cumulants for
homogeneous dimers (U ∗

m = 0.47), for symmetrical dimers
(u AA = uB B = −1, u AB = 0.25 U∗

m = 0.47) and the suitable
critical parameters. These systems belong to the universality
class of the three-dimensional Ising model.

We have studied systems with u AB = uB B = −1 and u AA

between −1 and 1. For u AA = 1 the fixed point value of the
cumulant was found to be U ∗

m ≈ 0.36. This value corresponds
to the universality class of the tricritical Ising model. However,
for u AA = 0.5 and 0 the application of the cumulant crossing
method requires application of much larger systems to achieve
the required high accuracy.

In summary, it is quite clear that the choice of interactions
between particular segments of heterogeneous dimers affects

8
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their phase transitions in the three-dimensional case as well.
The picture of phase behaviour of dimers is much more
complicated than previously supposed.
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